Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Terpene synthases and their contribution to herbivore-induced volatile emission in western balsam poplar (Populus trichocarpa).

Identifieur interne : 002024 ( Main/Exploration ); précédent : 002023; suivant : 002025

Terpene synthases and their contribution to herbivore-induced volatile emission in western balsam poplar (Populus trichocarpa).

Auteurs : Sandra Irmisch ; Yifan Jiang ; Feng Chen ; Jonathan Gershenzon ; Tobias G. Köllner [Allemagne]

Source :

RBID : pubmed:25303804

Descripteurs français

English descriptors

Abstract

BACKGROUND

As a response to caterpillar feeding, poplar releases a complex mixture of volatiles which comprises several classes of compounds. Poplar volatiles have been reported to function as signals in plant-insect interactions and intra- and inter-plant communication. Although the volatile blend is dominated by mono- and sesquiterpenes, there is much to be learned about their formation in poplar.

RESULTS

Here we report the terpene synthase (TPS) gene family of western balsam poplar (Populus trichocarpa) consisting of 38 members. Eleven TPS genes (PtTPS5-15) could be isolated from gypsy moth (Lymantria dispar)-damaged P. trichocarpa leaves and heterologous expression in Escherichia coli revealed TPS activity for ten of the encoded enzymes. Analysis of TPS transcript abundance in herbivore-damaged leaves and undamaged control leaves showed that seven of the genes, PtTPS6, PtTPS7, PtTPS9, PtTPS10, PtTPS12, PtTPS13 and PtTPS15, were significantly upregulated after herbivory. Gypsy moth-feeding on individual leaves of P. trichocarpa trees resulted in induced volatile emission from damaged leaves, but not from undamaged adjacent leaves. Moreover, the concentration of jasmonic acid and its isoleucine conjugates as well as PtTPS6 gene expression were exclusively increased in the damaged leaves, suggesting that no systemic induction occurred within the tree.

CONCLUSIONS

Our data indicate that the formation of herbivore-induced volatile terpenes in P. trichocarpa is mainly regulated by transcript accumulation of multiple TPS genes and is likely mediated by jasmonates. The specific local emission of volatiles from herbivore-damaged leaves might help herbivore enemies to find their hosts or prey in the tree canopy.


DOI: 10.1186/s12870-014-0270-y
PubMed: 25303804
PubMed Central: PMC4197230


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Terpene synthases and their contribution to herbivore-induced volatile emission in western balsam poplar (Populus trichocarpa).</title>
<author>
<name sortKey="Irmisch, Sandra" sort="Irmisch, Sandra" uniqKey="Irmisch S" first="Sandra" last="Irmisch">Sandra Irmisch</name>
</author>
<author>
<name sortKey="Jiang, Yifan" sort="Jiang, Yifan" uniqKey="Jiang Y" first="Yifan" last="Jiang">Yifan Jiang</name>
</author>
<author>
<name sortKey="Chen, Feng" sort="Chen, Feng" uniqKey="Chen F" first="Feng" last="Chen">Feng Chen</name>
</author>
<author>
<name sortKey="Gershenzon, Jonathan" sort="Gershenzon, Jonathan" uniqKey="Gershenzon J" first="Jonathan" last="Gershenzon">Jonathan Gershenzon</name>
</author>
<author>
<name sortKey="Kollner, Tobias G" sort="Kollner, Tobias G" uniqKey="Kollner T" first="Tobias G" last="Köllner">Tobias G. Köllner</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, Jena, Germany. koellner@ice.mpg.de.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, Jena</wicri:regionArea>
<wicri:noRegion>Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25303804</idno>
<idno type="pmid">25303804</idno>
<idno type="doi">10.1186/s12870-014-0270-y</idno>
<idno type="pmc">PMC4197230</idno>
<idno type="wicri:Area/Main/Corpus">001F68</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001F68</idno>
<idno type="wicri:Area/Main/Curation">001F68</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001F68</idno>
<idno type="wicri:Area/Main/Exploration">001F68</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Terpene synthases and their contribution to herbivore-induced volatile emission in western balsam poplar (Populus trichocarpa).</title>
<author>
<name sortKey="Irmisch, Sandra" sort="Irmisch, Sandra" uniqKey="Irmisch S" first="Sandra" last="Irmisch">Sandra Irmisch</name>
</author>
<author>
<name sortKey="Jiang, Yifan" sort="Jiang, Yifan" uniqKey="Jiang Y" first="Yifan" last="Jiang">Yifan Jiang</name>
</author>
<author>
<name sortKey="Chen, Feng" sort="Chen, Feng" uniqKey="Chen F" first="Feng" last="Chen">Feng Chen</name>
</author>
<author>
<name sortKey="Gershenzon, Jonathan" sort="Gershenzon, Jonathan" uniqKey="Gershenzon J" first="Jonathan" last="Gershenzon">Jonathan Gershenzon</name>
</author>
<author>
<name sortKey="Kollner, Tobias G" sort="Kollner, Tobias G" uniqKey="Kollner T" first="Tobias G" last="Köllner">Tobias G. Köllner</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, Jena, Germany. koellner@ice.mpg.de.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, Jena</wicri:regionArea>
<wicri:noRegion>Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC plant biology</title>
<idno type="eISSN">1471-2229</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alkyl and Aryl Transferases (genetics)</term>
<term>Alkyl and Aryl Transferases (metabolism)</term>
<term>Animals (MeSH)</term>
<term>Herbivory (physiology)</term>
<term>Plant Leaves (genetics)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Populus (enzymology)</term>
<term>Terpenes (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alkyl et aryl transferases (génétique)</term>
<term>Alkyl et aryl transferases (métabolisme)</term>
<term>Animaux (MeSH)</term>
<term>Feuilles de plante (génétique)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Herbivorie (physiologie)</term>
<term>Populus (enzymologie)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Terpènes (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Alkyl and Aryl Transferases</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Alkyl and Aryl Transferases</term>
<term>Plant Proteins</term>
<term>Terpenes</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Alkyl et aryl transferases</term>
<term>Feuilles de plante</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Alkyl et aryl transferases</term>
<term>Feuilles de plante</term>
<term>Protéines végétales</term>
<term>Terpènes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Herbivorie</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Herbivory</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>As a response to caterpillar feeding, poplar releases a complex mixture of volatiles which comprises several classes of compounds. Poplar volatiles have been reported to function as signals in plant-insect interactions and intra- and inter-plant communication. Although the volatile blend is dominated by mono- and sesquiterpenes, there is much to be learned about their formation in poplar.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Here we report the terpene synthase (TPS) gene family of western balsam poplar (Populus trichocarpa) consisting of 38 members. Eleven TPS genes (PtTPS5-15) could be isolated from gypsy moth (Lymantria dispar)-damaged P. trichocarpa leaves and heterologous expression in Escherichia coli revealed TPS activity for ten of the encoded enzymes. Analysis of TPS transcript abundance in herbivore-damaged leaves and undamaged control leaves showed that seven of the genes, PtTPS6, PtTPS7, PtTPS9, PtTPS10, PtTPS12, PtTPS13 and PtTPS15, were significantly upregulated after herbivory. Gypsy moth-feeding on individual leaves of P. trichocarpa trees resulted in induced volatile emission from damaged leaves, but not from undamaged adjacent leaves. Moreover, the concentration of jasmonic acid and its isoleucine conjugates as well as PtTPS6 gene expression were exclusively increased in the damaged leaves, suggesting that no systemic induction occurred within the tree.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Our data indicate that the formation of herbivore-induced volatile terpenes in P. trichocarpa is mainly regulated by transcript accumulation of multiple TPS genes and is likely mediated by jasmonates. The specific local emission of volatiles from herbivore-damaged leaves might help herbivore enemies to find their hosts or prey in the tree canopy.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25303804</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>07</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2229</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>14</Volume>
<PubDate>
<Year>2014</Year>
<Month>Oct</Month>
<Day>11</Day>
</PubDate>
</JournalIssue>
<Title>BMC plant biology</Title>
<ISOAbbreviation>BMC Plant Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Terpene synthases and their contribution to herbivore-induced volatile emission in western balsam poplar (Populus trichocarpa).</ArticleTitle>
<Pagination>
<MedlinePgn>270</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12870-014-0270-y</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">As a response to caterpillar feeding, poplar releases a complex mixture of volatiles which comprises several classes of compounds. Poplar volatiles have been reported to function as signals in plant-insect interactions and intra- and inter-plant communication. Although the volatile blend is dominated by mono- and sesquiterpenes, there is much to be learned about their formation in poplar.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Here we report the terpene synthase (TPS) gene family of western balsam poplar (Populus trichocarpa) consisting of 38 members. Eleven TPS genes (PtTPS5-15) could be isolated from gypsy moth (Lymantria dispar)-damaged P. trichocarpa leaves and heterologous expression in Escherichia coli revealed TPS activity for ten of the encoded enzymes. Analysis of TPS transcript abundance in herbivore-damaged leaves and undamaged control leaves showed that seven of the genes, PtTPS6, PtTPS7, PtTPS9, PtTPS10, PtTPS12, PtTPS13 and PtTPS15, were significantly upregulated after herbivory. Gypsy moth-feeding on individual leaves of P. trichocarpa trees resulted in induced volatile emission from damaged leaves, but not from undamaged adjacent leaves. Moreover, the concentration of jasmonic acid and its isoleucine conjugates as well as PtTPS6 gene expression were exclusively increased in the damaged leaves, suggesting that no systemic induction occurred within the tree.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Our data indicate that the formation of herbivore-induced volatile terpenes in P. trichocarpa is mainly regulated by transcript accumulation of multiple TPS genes and is likely mediated by jasmonates. The specific local emission of volatiles from herbivore-damaged leaves might help herbivore enemies to find their hosts or prey in the tree canopy.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Irmisch</LastName>
<ForeName>Sandra</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jiang</LastName>
<ForeName>Yifan</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Feng</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gershenzon</LastName>
<ForeName>Jonathan</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Köllner</LastName>
<ForeName>Tobias G</ForeName>
<Initials>TG</Initials>
<AffiliationInfo>
<Affiliation>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, Jena, Germany. koellner@ice.mpg.de.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>10</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Plant Biol</MedlineTA>
<NlmUniqueID>100967807</NlmUniqueID>
<ISSNLinking>1471-2229</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013729">Terpenes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.5.-</RegistryNumber>
<NameOfSubstance UI="D019883">Alkyl and Aryl Transferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.5.1.-</RegistryNumber>
<NameOfSubstance UI="C108877">terpene synthase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D019883" MajorTopicYN="N">Alkyl and Aryl Transferases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060434" MajorTopicYN="N">Herbivory</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013729" MajorTopicYN="N">Terpenes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>06</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>10</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>10</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>10</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>7</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25303804</ArticleId>
<ArticleId IdType="pii">s12870-014-0270-y</ArticleId>
<ArticleId IdType="doi">10.1186/s12870-014-0270-y</ArticleId>
<ArticleId IdType="pmc">PMC4197230</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant J. 2011 Apr;66(1):212-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21443633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Jan;29(1):87-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12060229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2013;13:15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23363415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 1990 Nov;16(11):3091-118</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24263298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1990 Nov 30;250(4985):1251-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17829213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4126-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9539701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Nov;25(11):4737-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24220631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Dec;15(12):2866-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14630967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2001 Oct;27(10):1911-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11710601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2007 Jun;10(6):490-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17498148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Aug;135(4):2025-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15310835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Dec 4;109(49):20124-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23169639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 May;129(1):257-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12011356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Apr;125(4):1930-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11299372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2011 Oct;28(10):2731-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21546353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2009 Aug;12(4):479-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19467919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2001 Jul;213(3):483-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11506373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Mar 16;291(5511):2141-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11251117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):11088-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1438319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):11836-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11607499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Feb;45(4):540-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16441348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2009 May;5(5):317-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19377458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Aug 3;406(6795):512-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10952311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Mar;193(4):1009-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22243440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2002 Aug;267(6):730-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12207221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Jan 29;457(7229):551-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19189423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Sep 4;109(36):14711-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22908266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;177(1):77-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17944821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1995 Dec 20;324(2):255-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8554317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1994 Sep 26;352(2):146-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7925964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2005 Oct;31(10):2231-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16195841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Aug;156(4):2082-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21690302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 1999;37:285-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11701825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2007 Jul;3(7):408-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17576428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2010 Mar;15(3):167-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20047849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Feb;161(2):787-804</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23256150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Jun;42(5):757-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15918888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Oct;157(2):770-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21813655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2003 Mar;216(5):745-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12624761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 May;135(1):483-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15122016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Aug;135(4):1956-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15299125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2006 Apr;15(5):1275-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16626454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Sep 23;309(5743):2070-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16179482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2003 Aug;6(4):372-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12873533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2012 May;17(5):250-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22305233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2014 Aug;37(8):1909-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24471487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 Aug;114(4):1161-1167</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12223763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2007 Oct;100(4):681-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17513307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Jan 24;103(4):1129-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16418295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010;10:226</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20964856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(5):e65030</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23741445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Mar 31;270(13):7375-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7706281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2012;12:84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22682202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2011 Jun;72(9):897-908</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21492885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Sep 19;277(5333):1815-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9295271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Feb;20(2):482-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18296628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Aug;117(4):1381-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9701594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Mar;152(3):1197-208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20044448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2009 Oct-Nov;70(15-16):1621-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19793600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Feb;37(4):603-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14756770</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Chen, Feng" sort="Chen, Feng" uniqKey="Chen F" first="Feng" last="Chen">Feng Chen</name>
<name sortKey="Gershenzon, Jonathan" sort="Gershenzon, Jonathan" uniqKey="Gershenzon J" first="Jonathan" last="Gershenzon">Jonathan Gershenzon</name>
<name sortKey="Irmisch, Sandra" sort="Irmisch, Sandra" uniqKey="Irmisch S" first="Sandra" last="Irmisch">Sandra Irmisch</name>
<name sortKey="Jiang, Yifan" sort="Jiang, Yifan" uniqKey="Jiang Y" first="Yifan" last="Jiang">Yifan Jiang</name>
</noCountry>
<country name="Allemagne">
<noRegion>
<name sortKey="Kollner, Tobias G" sort="Kollner, Tobias G" uniqKey="Kollner T" first="Tobias G" last="Köllner">Tobias G. Köllner</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002024 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002024 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25303804
   |texte=   Terpene synthases and their contribution to herbivore-induced volatile emission in western balsam poplar (Populus trichocarpa).
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25303804" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020